

Commission on Ecosystem Management

Angela Andrade 2019

CEM Mission

To provide expert guidance on **integrated approaches** to the management of natural and modified ecosystems to promote effective biodiversity conservation and sustainable development.

CEM Objectives

To promote the adoption of, and provide guidance for, **ecosystem-based approaches** to the management of landscapes and seascapes; provide authoritative guidance and support for ecosystem-based management; and promote **resilient socio-ecological systems** to address global changes.

5 Priority Areas

CEM Structure

THEMATIC GROUPS

-Nature-based Solutions (NBS) --Ecosystem-based Adaptation and Mitigation (EbA) -Eco-Disaster Risk Reduction -Ecosystem Restoration -Ecosystem Services Sustainable Use of Biodiversity and EM (SUME) **Ecosystem Resilience** -Red List of Ecosystems (RLE) Ecosystems and Invasive Species **Ecosystem Governance** -Business and Ecosystem Management -Biosphere Reserves -Cultural Practices and

Ecosystem Management

SPECIALIST GROUPS

-Artic -Agroecosystems -Coastal and Marine ecosystems -Deep Sea and Mining -Dryland ecosystems -Forest Ecosystems -Island ecosystems -Mediterranean ecosystems -Mountain ecosystems -Oasis and Deserts -Peatlands -Holarctic Steppes -Urban Ecosystems -Wetlands

TASK FORCES

-Systemic Pesticides -EbAquaculture -Fisheries Expert Group -Re-wilding -Synthetic Biology & E.

-Human Health and EM -Emergent Pollutants

Young Professionals Network

Steering Committee

Angela Andrade Chair

Madhav Karki Deputy Chair Vice Chair Asia

Liette Vasseur Vice Chair N. America

Bernal Herrera Vice Chair Latin America

BirguyLamizana Vice Chair Africa Kelvin Passfield Vice Chair Oceania

Jonathan Hughes Vice Chair Europe

Stephen R. Edwards Advisor to the Chair

CEM Regional Membership Distribution

C. Am., Mex. & E. Europe, 35, 3% Caribbean, 64, 5% W. Europe, 266, N. Africa, 22, 2% 22% N. America, 175, 15% W Asia, 52, 4% N.E. Asia, 34, 3% W. & C. Africa, 54, 5% Oceania, 94, 8% S. E. Africa, 81, 7% S. E. Asia, 31, 3% S. America, 89, 7% S. Asia, 195, 16%

REGIONS

1217 CEM members in Portal.

Ecosystem Risk Assessment

Objectives:

- Assess and document the conservation condition of ecosystems of the world: from the most threatened to the ones in good conservation conditions.
- ➤To promote the interaction with other products of the IUCN to have a more certain outlook of the situation of the biodiversity
- IUCN Categories and Criteria is a Global Standard for the assessment of the conservation status of ecosystems, at different levels.
- Evaluates whether ecosystems have reached the final stage of degradation (Collapse), or threatened at Critically Endangered, Endangered or Vulnerable levels.
- Based on a set of rules or criteria, for performing evidence based, scientific assessments of the risk of ecosystem collapse.

DOMENTHRANGED IN 1991

Suomen luontotyyppier

Discussion paper on spatial units An ecosystem type classification for SEEA EEA

Version: 18-2-2019

Prepared by: SEEA EEA Revision Working Group 1 on spatial unit [authors, and affiliations]

Ecosystem Risk Assessment

Red List of Ecosystems

- RLE website <u>www.iucnrle.org</u>: 150,073 visits from 209 countries. (50% more than 2017).
- > 2 policy perspectives in review.
- Information from **37 RLE assessments**:
 - * 1837 ecosystem types.
 - * **1231** ecosystem types data, converted into xml files, and added additional assessment information.
- Facebook (IUCN Red List of Ecosystems): 24,841 followers Twitter (@redlisteco): 5,771 followers Instagram(@redlist_of_ecosystems): 3,204 followers. (20% more than 2017).

Global Typology of Ecosystems

Terrestrial & Subterranean

Biome	Functional group (ecotype)	-
T1 Tropical-subtropical forests	T1.1Tropical/Subtropical lowland rainforests	×
T1 Tropical-subtropical forests	T1.2 Tropical/Subtropical dry forests and scrubs	
		x
T1 Tropical-subtropical forests	T1.3 Tropical/Subtropical montane rainforests	x
T1 Tropical-subtropical forests	T1.4 Tropical heath forests	x
T2 Temperate-boreal forests	T2.1 Boreal and montane needle-leaved forest	
& woodlands	and woodland	×
T2 Temperate-boreal forests	T2.2 Temperate deciduous forests and	
& woodlands	shrublands	×
T2 Temperate-boreal forests	T2.3 Cool temperate rainforests	
& woodlands		×
T2 Temperate-boreal forests	T2 4 Warm temperate rainforests	Â
& woodlands		×
T2 Temperate-boreal forests	T2.5 Temperate pyric humid forests	
& woodlands		×
T2 Temperate-boreal forests	T2.6 Temperate pyric sclerophyll forests and	
& woodlands	woodands	×
T3 Shrublands & shrub-	T3.1 Seasonally dry tropical shrublands	
dominated woodlands		×
T3 Shrublands & shrub-	T3.2 Seasonally dry temperate heaths and	
dominated woodlands	shrublands	×
T3 Shrublands & shrub-	T3.3 Cool temperate heathlands	Ê
dominated woodlands		×
T3 Shrublands & shrub-	T3.4 Rocky payements, screes and lava flows	
dominated woodlands	·····,,,	×
T4 Sayannas and grasslands	T4.1 Trophic savannas	×
T4 Savannas and grasslands	T4 2 Pyric tussock sayannas	×
T4 Savannas and grasslands	T4 3 Hummock savannas	×
T4 Savannas and grasslands	T4 4 Temperate wooded savannas	×
T4 Savannas and grasslands	T4.5 Temperate grasslands	Ŷ
T5 Deserts and semi-deserts	T5 1 Semi-desert stennes	Ŷ
T5 Deserts and semi-deserts	T5.2 Thorpy deserts and semi-deserts	Ŷ
T5 Deserts and semi-deserts	T5 3 Scleronbyll deserts and semi-deserts	Ĵ
T5 Deserts and semi-deserts	T5.4 Cool temperate deserts	Ĵ
T5 Deserts and semi-deserts	T5 5 Hyper-arid deserts	Ŷ
T6 Polar/alpine	T6.1 Ice sheets glaciers and perennial	Â
ro rolal, alpine	snowfields	×
T6 Polar/alpine	T6 2 Polar/alpine rocky outcrops	×
T6 Polar/alpine	T6 3 Polar tundra	Ŷ
T6 Polar/alpine	T6.4 Temperate alpine meadows and shrublands	Â
ro rolalyalpine	10.4 remperate alpine meadows and smubiands	~
T6 Polar/alpine	T6.5 Tropical alpine meadows and shrublands	÷
T7 Intensive anthronogenic	T7.1 Croplands	Â
terrestrial systems		~
T7 Intensive anthronogenic	T7 2 Sown pastures and old fields	Â
terrestrial systems	17.2 Sown pastares and old neids	×
T7 Intensive anthronogenic	T7 3 Plantations	Â
terrestrial systems	17.5 Handadons	~
T7 Intensive anthronogenic	T7.4 Urban and infrastructure lands	Â
terrestrial systems		×
S1 Lithic subterranean	S1 1 Aerobic caves	Ê
systems		~
S1 Lithic subterranean	S1 2 Endolithic systems	Ê
systems	Size Endendine Systems	~
S2 Subterranean freshwaters	S2.1 Underground streams and pools	Ŷ
S2 Subterranean freshwaters	S2.2 Groundwater aquifers	Û
S3 Tidal subterranean	S3 1 Anchialine caves	Ê
systems	SS.1 Anonaline Caves	
S4 Anthronogenic	S4.1 Subterranean excavations	×
subtorranoan systems	Star Subterranean excavations	
Subterraliedii Systems	64.2 Water pipes and subterranean errols	L^
subtorranoan systems	54.2 Water pipes and subterranean canals	
Sublemanean Systems		

Freshwater & transitional

вюте	 Functional group (ecotype) 	Ŧ	
FT 1 Palustrine wetlands	FT 1.1 Tropical flooded forests and peat forests	x	1
FT 1 Palustrine wetlands	FT 1.2 Seasonal floodplain marshes	х	1
FT 1 Palustrine wetlands	FT 1.3 Subtropical/temperate forested wetlands	x	1
FT 1 Palustrine wetlands	FT 1.4 Episodic arid floodplains	x	1
FT 1 Palustrine wetlands	FT1.5 Boreal, temperate and montane peat bogs	x	1
FT 1 Palustrine wetlands	FT1.6 Boreal and temperate fens	х	1
FT 1 Palustrine wetlands	FT 1.7 Artesian springs and oases	х	2
FT 1 Palustrine wetlands	FT 1.8 Geothermal wetlands	х	2
F1 Rivers and streams	F 1.1 Permanent upland streams	х	2
F1 Rivers and streams	F 1.2 Permanent lowland rivers	х	2
F1 Rivers and streams	F1.3 Freeze-thaw rivers and streams	х	2
F1 Rivers and streams	F 1.4 Monsoonal upland stream	х	2
F1 Rivers and streams	F 1.5 Monsoonal lowland rivers	х	2
F1 Rivers and streams	F 1.6 Arid episodic lowland rivers	х	2
F2 Lakes	F2.1 Freeze-thaw freshwater lakes	х	2
F2 Lakes	F2.2 Large permanent freshwater lakes		2
F2 Lakes	F2.3 Small permanent freshwater lakes	d	3
F2 Lakes	F2.4 Ephemeral freshwater lakes	х	2
F2 Lakes	F2.5 Permanent inland salt lakes	х	2
F2 Lakes	F2.6 Ephemeral salt lakes		2
F3 Artificial wetlands	F4.1 Large reservoirs	d	2
F3 Artificial wetlands	F4.2 Rice paddies		2
F3 Artificial wetlands	F4.3 Constructed lacustrine wetlands	d	3
F3 Artificial wetlands	F4.4 Canals and storm water drains		4
FM1 Transitional waters	FM1.1 Deepwater coastal inlets		4
FM1 Transitional waters	FM 1.2 Permanently open riverine estuaries and		
	bays		4
EM1 Transitional waters	EM 1.3 Intermittently closed coastal lagoons	~	2

Progress on descriptive profiles

Marine & transitional

Biome	Functional group (ecotype)	-
MT1 Shoreline systems	TM 1.1 Rocky Shores	х
MT1 Shoreline systems	TM 1.2 Muddy Shores	х
MT1 Shoreline systems	TM 1.3 Sandy Shores	х
MT1 Shoreline systems	TM 1.4 Boulder/cobble shores	х
MT2 Coastal vegetation	TM 2.1 Coastal shrublands and grasslands	x
MT3 Artificial shorelines	TM 3.1 Artificial shores	х
M1 Subtidal shelves and shelf	M1.1 Seagrass meadows	
breaks		х
M1 Subtidal shelves and shelf	M1.2 Kelp forests	
breaks		х
M1 Subtidal shelves and shelf	M1.3 Photic coral reefs	
breaks		х
M1 Subtidal shelves and shelf	M1.4 Shellfish beds and reefs	
breaks		х
M1 Subtidal shelves and shelf	M1.5 Marine animal forests	
breaks		
M1 Subtidal shelves and shelf	M1.6 Rocky reefs	
breaks		х
M1 Subtidal shelves and shelf	M1.7 Subtidal sandy bottoms	
breaks		x
M1 Subtidal shelves and shelf	M1.8 Subtidal muddy bottoms	
breaks		x
M1 Subtidal shelves and shelf	M1.9 Upwelling zones	
breaks		х
M2 Pelagic ocean waters	M2.1 Epipelagic ocean waters	х
M2 Pelagic ocean waters	M2.2 Mesopelagic ocean waters	х
M2 Pelagic ocean waters	M2.3 Bathypelagic ocean waters	х
M2 Pelagic ocean waters	M2.4 Abyssopelagic ocean waters	х
M3 Deep sea floors	M3.1 Continental slope and island slopes - soft	
	substrate	
M3 Deep sea floors	M3.2 Continental slope and island slopes - hard	
	substrate	
M3 Deep sea floors	M3.3 Marine canyons	х
M3 Deep sea floors	M3.4 Abyssal plains - soft substrate	х
M3 Deep sea floors	M3.5 Hadal zones	х
M3 Deep sea floors	M3.6 Seamounts, plateaus, hills, knolls	
M3 Deep sea floors	M3.7 Deepwater biogenic systems	
M3 Deep sea floors	M3.8 Chemosynthetically-based ecosystems	х
M4 Artificial marine systems	M4.1 Artificial reefs	
MFT1 Brackish tidal systems	MFT 1.1 Coastal river deltas (formely FM1.4)	
MFT1 Brackish tidal systems	MFT1.2 Intertidal forests and shrublands	
	(formerly FM1.5)	x
MFT1 Brackish tidal systems	MFT 1.3 Intertidal marshes (formerly FM1.6)	х

Nature-based Solutions

Nature-based Solutions (NbS) are defined by IUCN as "actions to protect, sustainably manage, and restore natural or modified ecosystems, that address societal challenges effectively and adaptively, simultaneously providing human well-being and biodiversity benefits".

СЕМ СРА

Nature-based Solutions

Objective

Develop and improve the knowledge base on NbS support the integration of this knowledge in planning and decision making, take part in the further development and expansion of the NbS work, with the IUCN Secretariat and other relevant commissions (WCPA, WCEL, CEC, CEESP).

Contribute to the operational framework to implement the NbS Resolution: developing the parameters/standards, the guidelines; testing the standards in case-studies; Collect evidence base on successful NbS standards; Synthesize NbS experiences & linkages.

ECO-Disaster Risk Reduction

Ecosystem-based Adaptation and Ecosystem-based Mitigation – EbA&M

Ecological Restoration

Ecosystem Services

Sustainable Use of Biodiversity-SUME

Sustainable Use and Management of Ecosystems SUME

Objective

- Identifying how sustainable use of renewable natural resources can contribute to management and restoration of ecosystems.
- Identifying and promoting conservation advantages accruing to biodiversity from more effective ecosystem management.
- Facilitating research and knowledge sharing that explores how sustainable use of renewable natural resources can foster more resilient ecosystems.

TG with most members:		
SUME	533	
E. Services	399	
Restoration	396	
EbA	359	
Resilience	229	

Ecosystem Resilience

Objective:

To clarify the concept of resilience with respect to simple and complex systems and demonstrate the value of tools for resilience-based natural resource stewardship, disaster risk reduction and ecosystembased adaptation.

- Building capacity for resilience thinking and assessment in a "learning-by-doing" process:
- Provides tools and guidance to assess resilience in a wide range of ecosystems.
- Communicates lessons learned from case studies for social learning. Assists the development of policies that support the emergence of resilience in SE systems.
- Platform to facilitate sharing of lessons learned for policy and regulatory frameworks.

Ecosystem Governance

Objective:

To foster discussion and analyze information that may help better understand how ecosystem governance can be support and enhance across the world and in various ecosystems to ensure biodiversity conservation, protection of ecosystem services, and environmental sustainability. Concepts and actions focus on supporting the SDGs, Paris Agreement and the Aichi targets under the CBD.

✓ Stimulate research on how different approaches to ecosystem governance, including biosphere reserves.

✓ Develop a framework to assess ecosystem governance and support sustainable development and the delivery of ecosystem services at regional scales, particularly in the context of climate change.

✓ Communicate with governments, communities, corporations and the general public to encourage the use of EG to support SDGs.

Cultural Practices and Ecosystem Management

Objective: provide expert knowledge and guidance on the values of culture and cultural practices to support biodiversity conservation, maintain and enhance cultural diversity and address the impacts of climate change in the management of both natural and modified ecosystems.

- Enhance understanding of cultural practices that contribute to or erode conservation and climate change adaptation, and the cultural values and value systems that support them.
- Increase knowledge of the role that human culture plays in climate change.
- Promote the development of tools and guidance to understand the relationship between various cultures and ecosystem management.
- Assist the development of policies that include and support the role of culture in ecosystem management for biodiversity conservation and climate change adaptation.

Communications

TG- Newsletters

CEM Newsletters

Facebook Pages

https://www.iucn.org/commissions/commission-ecosystemmanagement/get-involved

Muchas Gracias

